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dt
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a j
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ξ̂ direction
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Ai
2 Point locating ith upper stinger (fig. 2)

Ai
3 Point locating ith Lorentz coil (fig. 2)

Br Constraint-equation scalar (eq. 195)
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TECHNICAL MEMORANDUM

A “KANE’S DYNAMICS” MODEL
FOR THE ACTIVE RACK ISOLATION SYSTEM

1.  INTRODUCTION

The vibratory acceleration levels currently achievable, without isolation on manned space
structures, exceed those required by many space science experiments.1–4 Various active isolation devices
have been built to address this need. The first in space was called Suppression of Transient Accelerations
by Levitation (STABLE), which uses six independently controlled Lorentz actuators to levitate and
isolate at the experiment or subexperiment level.5 It was successfully flight tested on STS–73 (United
States Microgravity Laboratory–02 (USML–02)) in October 1995. Building on the technology
developed for STABLE, Marshall Space Flight Center is developing a second-generation experiment-
level isolation system: GLovebox Integrated Microgravity Isolation Technology (g-LIMIT).6 This
compact system will isolate microgravity payloads in the Microgravity Science Glovebox.

A second experiment-level isolation system, the Microgravity Isolation Mount (MIM), was
launched in the Priroda laboratory module, which docked with Mir in April 1996.7 MIM uses eight
Lorentz actuators with centralized control. It has supported several materials science experiments since
its implementation in May 1996. A modified version of MIM (MIM II) supported additional experiments
on STS–85 in August 1997.

Boeing’s Active Rack Isolation System (ARIS), in contrast to the above payload isolation sys-
tems, has been designed to isolate at the rack level. An entire international standard payload rack (ISPR)
will be isolated by each copy of ARIS on the International Space Station (ISS). The risk mitigation
experiment for ARIS was conducted in September 1996 on STS–79.8 Each of ARIS’s eight electrome-
chanical actuators requires a two rigid-body model. When the ISPR (“flotor”) is included, the total
isolation system model contains 17 rigid bodies.

In order to provide effective model-based isolation, the task of controller design requires prior
development of an adequate dynamic (i.e., mathematical), model of the isolation system. This technical
memorandum presents a dynamic model of ARIS in a state-space framework intended to facilitate the
design of an optimal controller. The chosen approach is the method of Thomas R. Kane (Kane’s
method).9 The result is a state-space, analytical (algebraic) set of linearized equations of motion for
ARIS. Interim versions of this work appeared as references 10 and 11.
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2.  THE CHOICE OF KANE’S METHOD

There are fundamentally two avenues for deriving system dynamical equations of motion: vector
methods and energy methods. Both avenues lead to scalar equations, but they have different starting
points. Vector methods begin with vector equations proceeding from Newton’s laws of motion and
energy methods begin with scalar energy expressions. The former category uses approaches built around
(1) momentum principles, (2) D’Alembert’s Principle, or (3) Kane’s Method; and the latter uses
approaches built around (1) Hamilton’s Canonical Equations, (2) the Boltzmann-Hamel Equations,
(3) the Gibbs Equations, or (4) Lagrange’s Equations.

Although some problems might lend themselves better to solution by other approaches, Kane’s
method appears in general to be distinctly advantageous for complex problems. As a rule, of the above
approaches, those that lead to the simplest and most intuitive dynamical equations are the Gibbs Equa-
tions and Kane’s Equations. Of those two approaches, the latter is the more systematic and requires less
labor. The reduction of labor is particularly evident when one seeks linearized equations of motion, as
proved to be necessary in the present case (due to the otherwise excessive algebraic burden).

An overview of Kane’s approach to developing linearized equations of motion is presented in
reference 10, along with a summary of the relative advantages of the method. See Kane and Levinson
for more extended treatments.9,12
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3.  DESCRIPTION OF ARIS

The total dynamical system S̃ consists of the stator S (ISS and the integral frame, from the mo-
tion of which ARIS isolates the ISPR), the flotor F (the ISPR), eight electromechanical actuator assem-
blies, and the umbilicals (see fig. 1).  The flotor is connected to the stator by the eight actuator
assemblies and by a variable number of umbilicals. The actuator assemblies also (and fundamentally)
act as the vibration isolation devices.

Actuator No. 8
Actuator No. 7

Actuator No. 4

Actuator No. 5

Isolation Plate

Actuator No. 3

Data
Connector

Power
Connector

Actuator Push Rod

Actuator No. 6

Actuator No. 2

Actuator No. 1

Figure 1.  ARIS control assembly.
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Each actuator assembly consists of a Lorentz (voice-coil) actuator, an arm, an upper stinger, a
push-rod, a lower stinger, and a position sensor. (See fig. 2 for a kinematic diagram and fig. 3 for a
computer-aided design (CAD) drawing of a single actuator.) One end of each actuator arm is connected
to the flotor through a cross-flexure, which allows the flotor a single rotational degree of freedom (DOF)
with respect to the stator. The other end of the arm is connected to one end of the push-rod through the
upper stinger, a wire of very high torsional stiffness. Each upper stinger provides two rotational DOF’s
in bending. The opposite end of the push-rod is connected to the stator through the lower stinger, another
short wire that allows three rotational DOF’s (two in bending, one in torsion) with respect to S.

Figure 2.  Kinematic diagram, including the ith actuator assembly and the umbilical.

Cross Flexure
(Angle     )

Lorentz Coil

Upper Stinger

(Angles           ) li
4

li
1

qi
1

li
2

li
3

q qi i
2 3,

Ai
3

Ai
1 Ai

2A*
i

P*
i

Fi

Fu

Si

Su

Arm

Flotor

Umbilical

Stator

Lower Stinger
(Angles                 )

Push Rod

q q qi i i
4 5 6, ,

Rattlespace
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Field Assembly
Coil Assembly

Pivot Link

2-DOF
Hinge
Cover

3-DOF Hinge
and Launch Sleeve

1-DOF Hinge
Position
Detector

LED

Lens

Figure 3.  A single ARIS actuator.

Each stinger is modeled as a massless spring. The umbilicals are also considered to be massless;
they are modeled together as a single, parallel spring-and-damper arrangement, attached at opposite ends
to stator and flotor, at effective umbilical attachment points Su and Fu, respectively. This effective
umbilical applies both a force and a moment to the flotor. The force is assumed to act at point Fu.

The stator, the flotor, and each actuator arm and push-rod are considered to be rigid bodies with
mass centers at points S F A Pi i

* * * *, , , and , respectively. The superscript * indicates the mass center of the
indicated rigid body; the subscript i corresponds to the ith actuator (i = 1, …, 8). All springs (cross
flexures and stingers) are assumed to be relaxed when the ISPR is centered in its rattlespace (the “home
position”).
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4.  COORDINATE SYSTEMS

With the ISPR in the home position, fix eight right-handed, orthogonal coordinate systems in the

flotor, one at each of the cross-flexure centers. Let the ith coordinate system (i = 1, …,  8)  have origin Fi

located at the center of the ith cross flexure, with axis directions determined by an orthonormal set of

unit vectors ˆ , ,f j
j

i
=( )1 2 3 . (The overhat indicates unit length, the index i corresponds to the ith actuator

assembly, and the index j distinguishes the three vectors.) Orient the unit vectors so that f̂
i

2
 is along the

ith arm, toward the ith voice coil; f̂
i

1
 is directed parallel to the other segment of the ith arm and toward

the upper stinger (which is located at Ai
2); and f̂

i

3
 is in the direction ˆ ˆf f

i i

1 2
×  (along the intersection of

the two cross-pieces of the ith cross-flexure).

Fix a similar right-handed coordinate system ˆ , ,a jj
i =( )1 2 3  in the arm of each actuator. Locate

each system â j
i  such that it is coincident with the corresponding flotor-fixed coordinate system f̂

j

i
 when

the flotor is in the home position.

At the respective lower stingers (points Si), place eight push-rod-fixed coordinate systems p̂
j
i

and eight stator-fixed coordinate systems ŝ j
i . Orient these 24 coordinate systems so that when the

stingers are relaxed (i.e., with the ISPR in the home position), the coordinate directions p̂
j
i  and ŝ j

i  are

coaligned for the ith actuator with p̂i
2
 (along with ŝ i

2 , in the home position) directed from Si toward Ai
2.

Finally, define a primary, central, flotor-fixed, reference coordinate system with coordinate

directions f̂
j
. All other flotor-fixed coordinate systems f̂

j

i
 are assumed capable of being referenced

(e.g., by known direction cosine angles) to this system (see eq. (4)).

5.  ROTATION MATRICES

Let the â j
i  coordinate system rotate, relative to the f̂

j

i
 coordinate system, through positive

angle qi
1 about the f̂

i

3
 axis. Similarly, let the orientation of the â j

i  coordinate system, relative to the p̂
j
i

coordinate system, be described by consecutive positive rotations qi
2  (about the p̂i

1
axis) and qi

3 (about

the moved three-axis). Let the orientation of the p̂
j
i  coordinate system, relative to the ŝ j

i  coordinate

system, be described by consecutive positive rotations qi
4  (about the ŝ i

3 axis), qi
5 (about the moved two-

axis), and qi
6  (about the moved one-axis).
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Let cj
i  and sj

i  represent the cosines and sines of the respective angles qj
i . Then the rotation

matrices among the several coordinate systems for the ith  actuator assembly are as follows:

ˆ

ˆ

ˆ

p

p

p

c c s c s

s c c s s c c s s s c s

s s c s c c s s s c c

i

i

i

i i i i i

i i i i i i i i i i i i

i i i i i i i i i i

1

2

3

4 5 4 5 5

4 6 4 5 6 4 6 4 5 6 5 6

4 6 4 5 6 4 6 4 5 6 5



















=
−

− + +
+ − + ii i

i

i

ic

s

s

s6

1

2

3

































ˆ

ˆ

ˆ

,
(1)

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

,

a

a

a

c c s s s

s c c s c

s c

p

p

p

i

i

i

i i i i i

i i i i i

i i

i

i

i

1

2

3

3 2 3 2 3

3 2 3 2 3

2 2

1

2

3
0

















= −
−



































(2)

and

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

.

a

a

a

c s

s c

f

f

f

i

i

i

i i

i i

i

i

i

1

2

3

1 1

1 1

1

2

3

0

0

0 0 1

















= −





































(3)

Finally, define a rotation matrix between the eight flotor-fixed coordinate systems f̂
j

i
 and the single

flotor-fixed reference coordinate system f̂
j
:

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

.

f

f

f

f f f

f f f

f f f

f

f

f

i

i

i

i i i

i i i

i i i

1

2

3

11 12 13

21 22 23

31 32 33

1

2

3





















=





































(4)

6.  GENERALIZED COORDINATES FOR S̃

The 48 angles qj
i  are the generalized coordinates of the system. For the ith actuator, the six

associated generalized coordinates are as follows: qi
1 is the angle at the cross flexure of the ith actuator;

qi
2  and qi

3 are the angles at the upper stinger; and qi
4 , qi

5, and qi
6  are the angles at the lower stinger.
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7.  GENERALIZED SPEEDS FOR S̃

Define generalized speeds uj
i  for the system as the time rate of change of the generalized coordi-

nates of S̃  in the inertial reference frame:

u q j = , ..., i = , ...,j
i

j
i= ˙ (for ; ) .1 6 1 8 (5)

8.  ANGULAR VELOCITIES OF REFERENCE FRAMES AND RIGID BODIES

Designate the reference frames corresponding to the stator, the ith push-rod, the ith arm, and the

flotor, by the symbols   
)
S ,   

)
Pi ,   

)
Ai , and   

)
F , respectively. Let   

)
Si  and   

)
Fi  represent, respectively, the

coordinate systems in   
)
S  and   

)
F  defined respectively by ˆ ˆ ˆs s si i i T

1 2 3[ ] and ˆ ˆ ˆ .f f f
i i i T

1 2 3






 Two

intermediate reference frames were introduced previously to permit describing the angular velocity of

each push-rod relative to the stator; designate those intermediate frames corresponding to the ith actuator

assembly by 
)
Ri  and 

)
Qi . Another intermediate reference frame was previously introduced between

frames   
)
Pi  and   

)
Ai ; designate this by   

)
Ti .

Let each intermediate reference frame have a frame-fixed, dextral set of unit vectors. Indicate the

unit vectors for each of these frame-fixed coordinate systems by using the corresponding lowercase

letter ( r̂ j
i  corresponding to 

  
)
Ri , etc.). The following, then, give the expressions for the angular velocities

of the various reference frames and rigid bodies of S̃ :

F A i i
i i u fω = 1 3

ˆ , (6)

P T i ii i u pω = 2 1
ˆ , (7)

T A i i
i i u tω = 3 3ˆ , (8)

S R i ii i u sω = 4 3ˆ , (9)

R Q i ii i u rω = 5 2ˆ , (10)
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Q P i ii i u qω = 6 1
ˆ . (11)

Using the addition theorem for angular velocities, the angular velocities of the rigid bodies

of S̃  are

S A i i i i i i i i i ii i u p u t u s u r u qω = + + + +2 1 3 3 4 3 5 2 6 1
ˆ ˆ ˆ ˆ ˆ , (12)

S P i i i i i ii i u s u r u qω = + +4 3 5 2 6 1
ˆ ˆ ˆ , (13)

and

S F i i i i i i i i i i i i
i i u p u t u s u r u q u fω = + + + + −2 1 3 3 4 3 5 2 6 1 1 3

ˆ ˆ ˆ ˆ ˆ ˆ . (14)

9.  BASIC ASSUMPTIONS

In the subsequent development of the ARIS equations of motion, it is assumed that ARIS works

as intended; i.e., that the ARIS controller prevents the ISPR from exceeding its rattlespace constraints.

It is also assumed that the small-angle approximations hold for angles qj
i . Angular velocities and angu-

lar accelerations are assumed to be small as well. This means that the use of first-order linear perturba-

tions will permit the full nonlinear equations of motion to be approximated accurately by a set of

first-order linear differential equations. Finally, it is assumed that the angular velocity of the stator is

negligible and that the stator translational velocities and accelerations are small.

10.  LINEARIZED VELOCITIES OF THE CENTERS

OF MASS FOR THE RIGID BODIES OF S̃

Represent by r AB  the position vector from arbitrary point A to arbitrary point B. Define the

following position vectors using the indicated scalars:

r l a l aF A i i i ii
i
2

1 2 2 1= +ˆ ˆ , (15)

r l pS A i ii
i
2

3 2
= ˆ , (16)

r p pS P i ii i
*

ˆ ,= 2 2
(17)
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r a a a aA A i i i i
i

i2
1 1 2 2

*
ˆ ˆ ,= + (18)

and

r f f f f f f
F F i i i i i ii

*
ˆ ˆ ˆ .= + +1 1 2 2 3 3

(19)

First-time derivatives of the appropriate position vectors, under the stated assumptions, yield

expressions for the velocities of the centers of mass for the 17 rigid bodies. The following expressions

are the linearized velocities for those centers of mass. (The presubscript indicates that the expressions

are linearized; the presuperscript indicates the reference frame assumed fixed for purposes of the

differentiations.)

l
S P i i i i ii iv p u s u s

*
= − +( )2 4 1 6 3ˆ ˆ  (i = 1, …, 8)  , (20)

l
S A i i i i i i i i i i i i i i i i i i ii iv a u a l u p a u a u p a u a u a l u p

*
ˆ ˆ ˆ ,= − − +( )[ ] + +( ) + − + +( )[ ]2 3 2 3 4 1 1 3 1 4 2 2 2 1 5 2 3 6 3

(21)

and

l
S Fv f u u l u u p

f u u u u u p u u l u p

1
2
1

1
1

2
1

3
1

2
1

3
1

4
1

3
1

5
1

1
1

1
1

1
1

3
1

2
1

6
1

1
1

3
1

4
1

2
1

2
1

2
1

1
1

5
1

2
1

3
1

6
1

*
ˆ

ˆ ˆ

= − − +( ) +[ ]
+ − − +( ) + +( )[ ] + − + +( )[ ]

ν ν ν

ν ν ν ν ν
33
1 , (22)

where

ν1 1 2
i i if l= − , (23)

ν2 2 1
i i if l= − , (24)

and

ν3 3
i if= . (25)

11.  LINEARIZED ACCELERATIONS OF THE CENTERS OF MASS

FOR THE RIGID BODIES OF S̃

Taking the time derivatives of the respective linearized velocity vectors yields expressions

for the linearized accelerations of the centers of mass for each rigid body. Note that the linearized

velocity vectors may be used in this step—the full nonlinear accelerations need not be determined.
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This is a tremendous savings of effort, which would not be afforded if Newton’s Second Law were

applied directly instead of Kane’s approach:

l
S P i i i i ii ia p u s u s

*
= − +( )2 4 1 6 3˙ ˆ ˙ ˆ , (26)

l
S A i i i i i i i i i i ii ia a u a l u p a u a u p

*
˙ ˙ ˆ ˙ ˙ ˆ= − − +( )[ ] + +( )2 3 2 3 4 1 1 3 1 4 2

+ − + +( )[ ]a u a u a l u pi i i i i i i i
2 2 1 5 2 3 6 3

˙ ˙ ˙ ˆ , (27)

and

 l
S Fa f u u l u u p1

2
1

1
1

2
1

3
1

2
1

3
1

4
1

3
1

5
1

1
1*

˙ ˙ ˙ ˙ ˆ= − − +( ) +[ ]ν ν ν

+ − − +( ) + +( )[ ]f u u u u u p1
1

1
1

3
1

2
1

6
1

1
1

3
1

4
1

2
1˙ ˙ ˙ ˙ ˙ ˆν ν

+ − + +( )[ ]ν ν ν2
1

2
1

1
1

5
1

2
1

3
1

6
1

3
1˙ ˙ ˙ ˆ .u u l u p (28)

12.  LINEARIZED PARTIAL VELOCITY VECTORS FOR THE POINTS OF S̃
AT WHICH THE CONTACT/DISTANCE FORCES ARE ASSUMED TO ACT

The partial velocities and partial angular velocities are formed by inspection of the relevant

velocity vectors. These partial velocities are then (and the order here is crucial) linearized by neglecting

higher order terms.

12.1  Linearized Partial Velocities of Pi
*

For the ith push-rod, the linearized partial velocities are

l
S

r
Pi iv

*
= 0 (for r = 1, 2, 3)  , (29)

l
S P i i i ii iv p s q s4 2 1 4 2

*
ˆ ˆ ,= − +( ) (30)

l
S P i i ii iv p q s5 2 6 1

*
ˆ ,= (31)

and
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l
S P i i i i i ii iv p q s q s s6 2 5 1 6 2 3

*
ˆ ˆ ˆ .= − +( ) (32)

12.2  Linearized Partial Velocities of Ai
*

For the ith arm, the linearized partial velocities are

l
S Ai iv1 0

*
,= (33)

l
S A i i i i i i ii iv a q p a a q p2 2 2 2 2 1 3 3

*
ˆ ˆ ,= − + +( ) (34)

l
S A i i i i i i i i i i ii iv a a q p a a q p a q p3 2 1 3 1 1 2 3 2 1 2 3

*
ˆ ˆ ˆ ,= − +( ) + −( ) + (35)

l
S A i i i i i i i i i i i i i i i ii iv a a q l p a a q p a q a q l q p4 2 1 3 3 1 1 2 3 2 2 5 1 6 3 5 3

*
ˆ ˆ ˆ ,= − + +( ) + −( ) − + +( ) (36)

l
S A i i i i i i i i i i i i i ii iv a q a q l q p a q p a q a p5 2 2 2 6 3 6 1 1 6 2 2 3 1 3

*
ˆ ˆ ˆ ,= + +( ) − + −( ) (37)

and

 l
S A i i i i i i i ii iv a q p a a q l p6 2 2 2 2 1 3 3 3

*
ˆ ˆ .= − + + +( ) (38)

12.3  Linearized Partial Velocities of F*

For the flotor, the linearized partial velocities are

l
S Fv f f f f1

1 2
1

1
1

1
1

2
1* ˆ ˆ ,= − (39)

l
S Fv q p q q f q p1

2 2
1

2
1

3
1

2
1

1
1

3
1

2
1

3
1

2
1

1
1

1
1

3
1*

ˆ ˆ ,= − +( ) + + − −( )ν ν ν ν ν (40)

l
S Fv q f q p q f q p q p1

3 1
1

3
1

2
1

1
1

1
1

1
1

1
1

2
1

3
1

2
1

1
1

2
1

1
1

2
1

3
1*

ˆ ˆ ˆ ,= − − +( ) + − +( ) +ν ν ν ν ν (41)

l
S Fv q q q f q l p1

4 1
1

3
1

2
1

3
1

2
1

6
1

1
1

1
1

3
1

1
1*

ˆ= − − + +( ) + −[ ]ν ν ν

+ − + +( ) − + +( )ν ν ν ν ν1
1

2
1

3
1

3
1

5
1

2
1

1
1

2
1

1
1

6
1

2
1

5
1

3
1

5
1

3
1q q f q p q q l q pˆ ˆ , (42)
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l
S Fv q q l q p q p q f q p1

5 2
1

2
1

6
1

3
1

3
1

6
1

1
1

1
1

6
1

2
1

1
1

2
1

3
1

2
1

1
1

3
1*

ˆ ˆ ˆ ,= +( ) + +[ ] − − − +( )ν ν ν ν ν (43)

and

l
S Fv q p q q f q l p1

6 2
1

2
1

3
1

2
1

1
1

3
1

2
1

3
1

2
1

1
1

1
1

3
1

3
1*

ˆ ˆ .= − +( ) + + − − +( )ν ν ν ν ν (44)

12.4  Linearized Partial Velocities of Fu

Define measure numbers for r
F Fu

*

as follows:

r X f Y f Z f
F F

F F F
u

u u u

*
ˆ ˆ ˆ .= + +
1
1

2
1

3
1

(45)

Since

l
S

r
F

l
S

r
F

l r

S F F Fv v
u

ru u1 1 1= + ∂
∂

×















* *
,ω (46)

the linearized partial velocities for the umbilical attachment point Fu can be expressed as follows:

l
S F

l
S F

Fu Fuv v Y f X fu1 1
1 1 1

1
2
1

= + −
* ˆ ˆ , (47)

l
S F

l
S F

Fu Fu Fu Fu Fuv v Z Y q p Y X q q Z q pu1 1
2 2 2

1
2
1

3
1

1
1

2
1

3
1= − +( ) + + −( ) −[ ]*

ˆ ˆ , (48)

l
S F

l
S F

Fu Fu Fu Fu Fuv v X q q Y p X Y q q p X q pu1 1
3 3 1

1
3
1

1
1

1
1

3
1

2
1

2
1

3
1= + −( ) −[ ] + + −( )[ ] +

*
ˆ ˆ ˆ , (49)

l
S F

l
S F

Fu Fu Fuv v X q q Z q q Y pu1 1
4 4 1

1
3
1

2
1

6
1

1
1= + −( ) + +( ) −[ ]*

ˆ

+ + −( ) +[ ] − +[ ]X Y q q Z q p X q Y q pFu Fu Fu Fu Fu1
1

3
1

5
1

2

1
6
1

5
1

3

1ˆ ˆ , (50)

l
S F

l
S F

Fu Fu Fu Fu Fuv v Z Y q q p X q p Y q q X pu1 1
5 5 2

1
6
1

1
1

6
1

2
1

1
1

3
1

3
1= + + +( )[ ] − ( ) − −( ) +[ ]*

ˆ ˆ ˆ , (51)

and

l
S F

l
S F

Fu Fu Fu Fu Fuv v Z Y q p Y X q q Z q pu1 1
6 6 2

1
2
1

3
1

1
1

2
1

3
1= − +( ) + + −( ) −[ ]*

ˆ ˆ . (52)
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12.5  Linearized Partial Velocities of Fi

The linearized partial velocities of Fi are as follows:

l
S Fi iv1 0= , (53)

l
S F i i i ii iv l l q a2 1 2 3 3= − +( ) ˆ , (54)

l
S F i i i ii iv l a l a3 1 1 2 2= −ˆ ˆ , (55)

l
S F i i i i i i i i i i i i i i ii iv l l a l q l a l q l q q l q a4 1 3 1 3 3 2 2 1 5 2 2 6 3 5 3= −( ) + −( ) + + +( ) −[ ]ˆ ˆ ˆ , (56)

l
S F i i i i i i i i i i i i i ii iv l q q l q a l q q a l l q a5 1 2 6 3 6 1 2 2 6 2 2 1 3 3= − +( ) +[ ] + +( ) + −( )ˆ ˆ ˆ , (57)

and

l
S F i i i i i i i ii iv l q a l l q l a6 3 2 2 1 2 3 3 3= − + −( )ˆ ˆ . (58)

13.  LINEARIZED PARTIAL ANGULAR VELOCITIES

FOR THE RIGID BODIES OF S̃

The following are the linearized partial angular velocities for the system:

For the ith push-rod:

l
S

r
Pi i rω = =0 1 2 3( , , ) ,for (59)

l
S P ii i sω 4 3= ˆ , (60)

l
S P ii i rω 5 2= ˆ , (61)

and

l
S P ii i qω6 1

= ˆ ; (62)

for the ith actuator arm:
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l
S Ai iω1 0= , (63)

l
S A ii i pω 2 1

= ˆ , (64)

l
S A ii i tω3 3= ˆ , (65)

l
S A ii i sω 4 3= ˆ , (66)

l
S A ii i rω 5 2= ˆ , (67)

and

l
S A ii i qω6 1

= ˆ ; (68)

for the flotor:

l
S F a1

1 3
1ω = − , (69)

l
S F p1

2 1
1ω = ˆ , (70)

l
S F t1

3 3
1ω = ˆ , (71)

l
S F s1

4 3
1ω = ˆ , (72)

l
S F r1

5 2
1ω = ˆ , (73)

l
S F q1

6 1
1ω = ˆ , (74)

and

  l
S

r
Fi r , ..., i , ,ω = = =0 1 6 2 8( ; ) .K (75)
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14.  LINEARIZED ANGULAR ACCELERATIONS FOR THE RIGID BODIES OF S̃

14.1  Linearized Angular Acceleration of Actuator Push-Rod   
)
Pi

l
S P i i i i i ii i u p u p u pα = + +˙ ˆ ˙ ˆ ˙ ˆ .6 1 5 2 4 3

(76)

14.2  Linearized Angular Acceleration of Actuator Arm   
)
Ai

l
S A i i i i i i i ii i u u a u a u u aα = +( ) + + +( )˙ ˙ ˆ ˙ ˆ ˙ ˙ ˆ .2 6 1 5 2 3 4 3 (77)

14.3  Linearized Angular Acceleration of the Flotor   
)
F

l
S F i i i i i i i i ii u u f u f u u u fα = +( ) + + − + +( )˙ ˙ ˆ ˙ ˆ ˙ ˙ ˙ ˆ .2 6 1 5 2 1 3 4 3

(78)

15.  CONTRIBUTIONS TO THE SET OF GENERALIZED ACTIVE FORCES

DUE TO THE RIGID BODIES OF S̃

15.1  Contributions Due to the Flotor

On orbit (i.e., neglecting the effects of gravity), the flotor is acted upon by forces and moments

due to each Lorentz coil, actuator arm, and umbilical, and by direct disturbances.

Let −FCi and −MCi  represent, respectively, the force and moment exerted by the ith Lorentz coil

(located at Ai
3) on the flotor,

where

F F aC C ii i= ˆ1 , (79)

assumed to act at point Fi, and

M r F F l l aC F A C C i i ii i
i

i i= × = − +3 1 4 3( ) ˆ  . (80)
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Let FFi and MFi  represent, respectively, the force and moment exerted by the ith actuator arm on

the flotor, at the ith cross-flexure. Since FFi  is a noncontributing force, it can be ignored in the analysis.

The total moment MF  due to the eight cross-flexure springs has value

M kiqi fF

i

i
= ∑

=
1 1

1

8

3
ˆ   , (81)

where ki
1 is the ith cross-flexure spring stiffness.

Let FU and MU represent, respectively, the force and moment applied to the flotor by the umbilical,

where the force is assumed to act at flotor-fixed point Fu . Umbilical force FU is given by the equation

F k x c x k x c xU = − −( ) + − −( )1 1 1 1 1 2 2 2 2 2
˙ ˆ ˙ ˆξ ξ

+ − −( ) +k x c x Fb3 3 3 3 3
˙ ˆ ;ξ (82)

where ξ̂
i
 is some appropriate stator-fixed coordinate system; x1, x2, and x3 are the umbilical elongations

in the respective ξ̂
i
(i = 1, 2, 3) directions; Fb is the umbilical bias force in the home position; k1, k2,

and k3 are umbilical spring stiffnesses; and c1, c2, and c3 are umbilical damping constants. Umbilical

moment MU  is given by

M MU
b= − −( ) + − −( ) + − −( ) +κ φ γ φ ξ κ φ γ φ ξ κ φ γ φ ξ1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

˙ ˆ ˙ ˆ ˙ ˆ   , (83)

where φ1, φ2, and φ3 are components of the umbilical angle of twist φ in the respective ξ̂
i
(i = 1, 2, 3)

directions; Mb is the umbilical bias moment in the home position; κ1, κ2, and κ3 are torsional umbilical

spring stiffnesses; and γ1, γ2, and γ3 are torsional umbilical damping constants.

Let FDand M Drepresent, respectively, the unknown disturbance force and moment acting on

the flotor. Assume FD to act through the flotor mass center F*. Define Fi
Dand Mi

D  to be the ith compo-

nents, respectively, of FDand M D, componentiated in   
)
F1.

In terms of the above, the flotor’s contribution to the set of generalized active forces, for the rth

generalized speed, is
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l r
F

l
S

r
F U

l
S

r
F D

l
S

r
F U D

i

l
S

r
F C

l
S

r
F C

i

Q v F v F M M k i q i f i

v F M

u

i i i

= ⋅ + ⋅ + ⋅ + + ∑






− ⋅ + ⋅( )∑

=

=

1 1 1

1 1

1 1 3
1

8

1

8

* ˆ

.

ω

ω
(84)

The umbilical contributions to the l r
FQ ’s, namely, l

S
r

F U
l

S
r
F Uv F Mu1 1⋅ + ⋅ω , are addressed in the following

two sections. The remaining terms of the l r
FQ ’s are as follows:

l
S F D D Dv F f F f F1

1 2
1

1 1
1

2
*

,⋅ = − (85)

l
S F D DM M1

1 3ω ⋅ = − , (86)

l
S F Cv Fi i1

1 0⋅ −( ) = , (87)

l
S F C C i iM F l li i1

1 1 4ω ⋅ −( ) = − +( ) , (88)

l
S F

i
kiqi f

i
k q k q k q k q k q1

1 1 1 31

8

1
1

1
1

1
2

1
2

1
3

1
3

1
4

1
4

1
5

1
5ω ⋅ ∑







= − − + + −
=

ˆ , (89)

l
S F D D D Dv F q q F F F q f q1

2 3
1

1
1

3
1

1 3
1

2 3 1
1

3
1

2
1

1
1

1
1*

,⋅ = −( ) − + + −( )ν ν ν ν (90)

l
S F D D DM M q q M1

2 1 1
1

3
1

2ω ⋅ = + −( ) , (91)

l
S F Cv Fi i1

2 0⋅ −( ) = , (92)

l
S F CM i1

2 0ω ⋅ −( ) = , (93)

l
S F

i
kiqi f

i1
2 1 1 3

1

8
0ω ⋅ ∑







=
=

ˆ , (94)

l
S F D D Dv F l q F l q F1

3 2
1

2
1

1
1

1 1
1

1
1

1
1

2
*

,⋅ = − +( ) + +( )ν ν (95)

l
S F D DM M1

3 3ω ⋅ = , (96)
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l
S F C C iv F F li i i1

3 1⋅ −( ) = − , (97)

l
S F C C i iM F l li i1

3 1 4ω ⋅ −( ) = +( ) , (98)

l
S F

i
kiqi f

i
k q k q k q k q k q1

3 1 1 3
1

8
1
1

1
1

1
2

1
2

1
3

1
3

1
4

1
4

1
5

1
5ω ⋅ ∑







= − − + + −
=

ˆ , (99)

l
S F D D

D

D

v F l q q l q F

l q q l q q F

q q l q F

1
4 3

1
2
1

3
1

2
1

6
1

2
1

1
1

1

3
1

3
1

1
1

1
1

1
1

1
1

3
1

5
1

2

1
1

2
1

6
1

2
1

3
1

5
1

3

*

,

⋅ = − − + +( ) +[ ]
+ −( ) + + +[ ]
+ − +( ) + −( )[ ]

ν ν

ν ν

ν ν (100)

l
S F D D D DM q q M q M M1

4 2
1

6
1

2 5
1

1 3ω ⋅ = +( ) − + , (101)

l
S F C C i iv F F l li i i1

4 1 3⋅ −( ) = − −( ) , (102)

l
S F C

l
S F CM Mi i1 1

4 3ω ω⋅ −( ) = ⋅ −( ) , (103)

l
S F

i
l

S F

i
kiqi f

i
kiqi f

i1 1
4 1 1 3

1

8

3 1 1 3
1

8
ω ω⋅ ∑







= ⋅ ∑




= =

ˆ ˆ , (104)

l
S F D D

D

D

v F l q q q F

q q q q F

q f q F

1
5 3

1
6
1

2
1

2
1

6
1

3
1

1

1
1

2
1

6
1

3
1

1
1

3
1

2

1
1

2
1

3
1

2
1

1
1

3

*

,

⋅ = + +( ) +[ ]
+ − +( ) + −( )[ ]
+ − + −[ ]

ν ν

ν ν

ν ν (105)

l
S F D D D DM q q M M q q M1

5 1
1

3
1

1 2 2
1

6
1

3ω ⋅ = − −( ) + − +( ) , (106)

l
S F C C i i i i iv F F l q l l qi i i1

5 1 2 1 3 6⋅ −( ) = + −( )[ ] , (107)

l
S F C C i i i iM F l l q qi i1

5 1 4 2 6ω ⋅ −( ) = − +( ) +( ) , (108)
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l
S F

i
kiqi f

i1
5 1 1 3

1

8
0ω ⋅ ∑







=
=

ˆ , (109)

l
S F D D D Dv F q q F l q F l q f q F1

6 3
1

1
1

3
1

1 3
1

2
1

3
1

2 3
1

1
1

3
1

2
1

1
1

1
1

3
*

,⋅ = −( ) + −( ) + + + −( )ν ν ν ν (110)

l
S F D

l
S F DM M1 1

6 2ω ω⋅ = ⋅ , (111)

l
S F Cv Fi i1

6 0⋅ −( ) = , (112)

l
S F CM i1

6 0ω ⋅ −( ) = , (113)

and

l
S F

i
l

S F

i
kiqi f

i
kiqi f

i1 1
6 1 1 3

1

8

2 1 1 3
1

8
ω ω⋅ ∑







= ⋅ ∑




= =

ˆ ˆ . (114)

Notice the coupling between the unknown-disturbance measure numbers and the generalized coordinates.

This coupling will make the disturbance input matrix E (in eq. (203)) time-varying.

15.2  Umbilical Force FU

Equation (82) expresses umbilical force FU in terms of umbilical-elongation components x1, x2,

and x3, and their time derivatives. These items must be reexpressed in terms of the generalized coordi-

nates and generalized speeds.

If the umbilical attachment point Fu is at Fuh in the home position, then

x r r ii
S F S F

i
u u u uh= −( ) ⋅ =ˆ , ( , , ) .ξ 1 2 3 (115)

But

r r r r r r rS F S F F F S F F F S S S Fu u u uh uh u u u u uh− = = + − −1 1 1 1 , (116)

where the right-hand-side terms can be expressed by

r l p l a l aS F1 1 3
1

2
1

2
1

1
1

1
1

2
1= − −ˆ ˆ ˆ , (117)
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r x f y f z fF F
Fu Fu Fuu1

1
1

2
1

3
1

= + +ˆ ˆ ˆ , (118)

r x s y s z sS S
Su Su Suu1 1

1
2
1

3
1= + +ˆ ˆ ˆ , (119)

and

r x s y s z sS Fu uh = + +0 1
1

0 2
1

0 3
1ˆ ˆ ˆ   , (120)

for appropriately defined coefficients.

Now, define the following rotation matrix:

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ξ

ξ

ξ

1

2

3

11 12 13

21 22 23

31 32 33

1
1

2
1

3
1



















=
































r r r

r r r

r r r

s

s

s

  . (121)

In terms of the ξ̂
i
 coordinate system, equation (116) can now be written in linearized form as

r x x xF Fuh u = + +1 1 2 2 3 3
ˆ ˆ ˆξ ξ ξ , (122)

where

x

x

x

r r r

r r r

r r r

C y q q q z q l q l q q

C z q q x q q

F F

F F

u u

u u

1

2

3

11 12 13

21 22 23

31 32 33

1 1
1

3
1

4
1

5
1

3
1

4
1

1
1

3
1

4
1

2 2
1

6
1

1
1

3












=

















+ − −( ) + − + +( )
− +( ) − −⋅ 11

4
1

2
1

3
1

4
1

3 2
1

5
1

1
1

2
1

6
1

3
1

6
1

−( ) − +( )
+ −( ) + −( ) +( ) +



















q l q q

C l x q y l q q l qF Fu u

(123)

for

C x x l xF Su u1 2
1

0= − − − , (124)

C y y l l yF Su u2 3
1

1
1

0= − + − − , (125)

and

C z z zF Su u3 0= − − . (126)
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Differentiating,

˙

˙

˙

x

x

x

r r r

r r r

r r r

y u u u z u l u l u u

z u u x u u

F F

F F

u u

u u

1

2

3

11 12 13

21 22 23

31 32 33

1
1

3
1

4
1

5
1

3
1

4
1

1
1

3
1

4
1

2
1

6
1

1
1

3
1












=

















− −( ) + − + +( )
− +( ) − − −⋅ uu l u u

l x u y l u u l uF Fu u

4
1

2
1

3
1

4
1

2
1

5
1

1
1

2
1

6
1

3
1

6
1

( ) − +( )
−( ) + −( ) +( ) +



















. (127)

Using equations (82) and (123)–(127), a linearized expression could now be written straightforwardly for

the umbilical force FU .

15.3  Umbilical Moment MU

Equation (83) expresses umbilical moment MU in terms of angle-of-twist components φ1, φ2,
and φ3, and their time derivatives. These items must be reexpressed in terms of the generalized coordi-
nates and generalized speeds.

Let φ φn̂  represent the rotation of the flotor, relative to the stator, from the home position. n̂φ  is

the rotation axis, and φ is the angle of twist about that axis. Note that

φ φ ξφi i
n i= ⋅ =ˆ ˆ , , ) .( 1 2 3 (128)

Express n̂φ  as

ˆ ˆ ˆ ˆn g f g f g fφ = + +1 1
1

2 2
1

3 3
1

. (129)

Define rotation matrix Q by

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

f

f

f

Q

s

s

s

1
1

2
1

3
1

1
1

2
1

3
1





















= [ ]
















. (130)
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The linearized 3×3 rotation matrix lQ has elements lQij defined as follows:

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

f

f

f

q q q q

q q q q q

q q q

s

s

s

1
1

2
1

3
1

1
1

3
1

4
1

5
1

1
1

3
1

4
1

2
1

6
1

5
1

2
1

6
1

1
1

2
1

3
1

1

1

1





















=
− + + −

− − +
− −

































. (131)

For small φ, it can be shown13 that

φ
0

0

0 1

3 2

3 1

2 1

1 2

g g

g g

g g

Q Q

Q

l l
T

l

–

–

–

,

















=
−

+( )tr (132)

where the post-superscript T  indicates matrix transposition and tr lQ represents the trace of lQ. Substitu-

tion from equation (131) into equation (132), and simplification, yields

g q q1 2
1

6
11

= ⋅ +( )φ
, (133)

g q2 5
11

= ⋅
φ

, (134)

and

g q q q3 1
1

3
1

4
11

=
−

⋅ − −( )φ
.   (135)

Substituting from equations (133)–(135) into equation (129), and transforming into the ŝ i
1 coordinate sys-

tem by use of lQ, one obtains the following expression for the spin axis:

l
l

n q q s q s q q q sˆ ˆ ˆ ˆ .φ φ
= +( ) + − − −( )[ ]1

2
1

6
1

1
1

5
1

2
1

1
1

3
1

4
1

3
1 (136)

Since l n̂φ  has unit length,

l q q q q q qφ = +( ) + ( ) + − −( )



2

1
6
1 2

5
1 2

1
1

3
1

4
1 2 1 2

. (137)
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Use of equations (128) and (136) leads to the following linearized forms for angular position and rotation
rate:

φ
φ
φ

1

2

3

11 12 13

21 22 23

31 32 33

2
1

6
1

5
1

1
1

3
1

4
1















=
















+( )
− −( )



















r r r

r r r

r r r

q q

q

q q q–

,
(138)

and

˙

˙

˙ –

.

φ
φ
φ

1

2

3

11 12 13

21 22 23

31 32 33

2
1

6
1

5
1

1
1

3
1

4
1

















=
















+( )
− −( )



















r r r

r r r

r r r

u u

u

u u u
(139)

From equations (83), (138), and (139), a linearized expression could now be written straightfor-

wardly for the umbilical moment MU . The flotor’s contribution to the set of generalized active forces

for the rth generalized speed could then be found by substituting the expressions for FU (sec. 15.2) and

MU  into equation (84).

15.4  Contributions Due to the Actuator Arms

The forces and moments acting on the ith actuator arm are due to the respective Lorentz coil

(located at Ai
3), the flotor (through the ith cross flexure), and the respective push-rod (through the upper

stinger). The coil force FCi  is the only contributing force. The contributing loads, in the above indicated

order, are as follows:

F F aC C ii i= ˆ ,1  assumed to act at point Fi , (140)

M r F l l a F a F l l aC F A C i i i C i C i i ii i
i

i i i= × = +( ) × = − +( )3 1 4 2 1 1 4 3ˆ ˆ ˆ , (141)

− = −M k q fF i i i
i 1 1 3

ˆ , (142)

and

 M k q p k q tA i i i i i i
i = − −2 2 1 3 3 3ˆ ˆ , (143)

where li2  and li4  are pertinent geometric lengths, and ki
2 and ki

3are pertinent upper-stinger spring stiffnesses.
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In terms of the above, the contribution for the ith actuator arm to the set of generalized active

forces for the rth generalized speed is

l r
A

l
S

r
F C

l
S

r
A A C FQ v F M M Mi i i

i
i i i= ⋅ + ⋅ + −( )ω . (144)

The individual terms of the l r
AQ i˜ ’s are as follows:

l
S F Cv Fi i

1 0⋅ = , (145)

l
S A A C Fi

i i iM M Mω1 0⋅ + −( ) = , (146)

l
S F Cv Fi i

2 0⋅ = , (147)

l
S A A C F i ii

i i iM M M k qω 2 2 2⋅ + −( ) = − , (148)

l
S F C C iv F F li i i

3 1⋅ = , (149)

l
S A A C F i i i i C i ii

i i i iM M M k q k q F l lω3 1 1 3 3 1 4⋅ + −( ) = − − +( ) , (150)

l
S F C C i iv F F l li i i

4 1 3⋅ = −( ) , (151)

l
S A A C F i i i i C i ii

i i i iM M M k q k q F l lω 4 1 1 3 3 1 4⋅ + −( ) = − − − +( ) , (152)

l
S F C C i i i i iv F F l q q l qi i i

5 1 2 6 3 6⋅ = − +( ) −[ ] , (153)

l
S A A C F C i i i ii

i i i iM M M F l l q qω 5 1 4 2 6⋅ + −( ) = +( ) +( ) , (154)

l
S F Cv Fi i

6 0⋅ = , (155)

and

l
S A A C F i ii

i i iM M M k qω6 2 2⋅ + −( ) = − . (156)

Notice the coupling between the control inputs and the generalized coordinates. This coupling will make

the disturbance input matrix B (in eq. (204)) time varying.
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15.5  Contributions Due to the Push-Rods

The contributing loads on each push-rod are moments MPi and −M Ai , where (using pertinent

lower-stinger stiffnesses)

M k q s k q r k q qP i i i i i i i i ii = − − −4 4 3 5 5 2 6 6 1
ˆ ˆ ˆ . (157)

The contribution for the ith push-rod to the set of generalized active forces for the rth generalized

speed is

l r
P

l
S

r
P P AQ M Mi i i i= ⋅ −( )ω . (158)

The individual terms of the l r
PQ i ’s are as follows:

l
S

r
P P Ai i iM M rω ⋅ −( ) = =0 1 2 3( , , ) , (159)

l
S P P A i i i ii i iM M k q k qω 4 3 3 4 4⋅ −( ) = − , (160)

l
S P P A i ii i iM M k qω 5 5 5⋅ −( ) = − , (161)

and

l
S P P A i i i ii i iM M k q k qω6 2 2 6 6⋅ −( ) = − . (162)

16.  CONTRIBUTIONS TO THE SET OF GENERALIZED INERTIA

FORCES DUE TO THE RIGID BODIES OF S̃

Represent (by I jk
A Ai i/ *

) the central moment/product of inertia of the ith actuator arm for the j and

k body-fixed coordinate directions â j
i  and âk

i . Define push-rod inertias I j
P Pi i/ *

analogously, where the

single subscript indicates that the axes are assumed to be principal axes. Let I jk
F F/ *

represent the central

inertia scalar of the flotor for the flotor-fixed coordinate directions f̂
j

1
 and f̂

k

1
. Use the symbol H to

represent an angular momentum vector. Associated post-superscripts on H have the same meanings as

for the inertias. The contributions to the generalized inertia forces for S̃  can now be expressed.
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16.1  Contributions Due to the Push-Rods

The contributions l r
P

Q
i*( ) to the generalized inertia forces due to the ith push-rod are as follows:

  
l r

P
l

S
r
P

P l
S P

l
S

r
P

l
P P

Q v m a H r i
i i i

i
i i i i i* * * *

˙ ( , , ; , , ) ,( ) = ⋅ −



 + ⋅ −





= = =ω 0 1 2 3 1 8K (163)

l
P

l
S P

P l
S P

l
S P

l
P P

P
i P P i

Q v m a H

m p I u

i i i
i

i i i i i

i
i i

4 4 4

2
2

3 4

*
* * *

*

˙

˙ ,

( ) = ⋅ −



 + ⋅ −





= − ( ) +





ω

(164)

  l
P

l
S P

P l
S P

l
S P

l
P P P P iQ v m a H I u

i i i
i

i i i i i i i
5 5 5 2 5
* * * * *

˙ ˙ ,( ) = ⋅ −



 + ⋅ −





= −ω (165)

  

l
P

l
S P

P l
S P

l
S P

l
P P

P
i P P i

Q v m a H

m p I u

i i i
i

i i i i i

i
i i

6 6 6

2
2

1 6

* * * *

*

˙

˙ .

( ) = ⋅ −



 + ⋅ −





= − ( ) +





ω

(166)

16.2  Contributions Due to the Actuator Arms

The contribution l r
A

Q
i*( )  to the generalized inertia forces due to the ith actuator arm for the rth

generalized speed is

l r
A

l
S

r
A

A l
S A

l
S

r
A

l
A A

Q v m a H
i i i

i
i i i i i* * * *

˙( ) = ⋅ −



 + ⋅ −





ω   . (167)

Then the individual, nonzero terms of the l r
A

Q
i*( ) ’s are as follows:

l
S A

A l
S A

A
i i i i i i i i ii i

i
i i

i
v m a m a u a a l u a a u2 2

2
2 2 2 3 6 1 2 5

* *
˙ ˙ , ˙ ,⋅ −



 = − ( ) + +( )[ ] −








(168)
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l
S A

l
A A A A i i A A i A A i ii i i i i i i i iH I u u I u I u uω 2 11 2 6 12 5 13 3 4⋅ −





= − +( ) − − +( )˙ ˙ ˙ ˙ ˙ ˙ ,
* * * */ / /

(169)

 l
S A

A l
S A

A
i i i i i i i ii i

i
i i

i
v m a m a a u a a a l u3 1

2
2

2
3 1

2
2 2 3 4

* *
˙ ˙ ,⋅ −



 = − ( ) + ( )









+ ( ) + +( )









(170)

l
S A

l
A A A A i i A A i A A i ii i i i i i i i iH I u u I u I u uω3 31 2 6 32 5 33 3 4⋅ −





= − +( ) − − +( )˙ ˙ ˙ ˙ ˙ ˙ ,
* * * */ / /

(171)

l
S A

A l
S A

A
i i i i i i i i ii i

i
i i

i
v m a m a a a l u a a l u4 1

2
2 2 3 3 1

2
2 3

2
4

* *
˙ ˙ ,⋅ −



 = − ( ) + +( )









+ ( ) + +( )









(172)

l
S A

l
A A

l
S A

l
A Ai i i i i iH Hω ω4 3⋅ −





= ⋅ −





˙ ˙ ,
* *

(173)

l
S A

A l
S A

A
i i i i i i i i ii i

i
i i

i
v m a m a u a a u a a l u5 1

2
5 1 2 2 1 2 3 6

* *
˙ ˙ ˙ ,⋅ −



 = − ( )









− +( ) 



(174)

l
S A

l
A Ai i iHω 5 ⋅ −





=˙
*

− +( ) − − +( )I u u I u I u uA A i i A A i A A i ii i i i i i
21 2 6 22 5 23 3 4

/ / /* * *
˙ ˙ ˙ ˙ ˙ , (175)

  l
S A

A l
S A

A
i i i i i i i i i i ii i

i
i i

i
v m a m a a l u a l u a a l u6 2 2 3 2 2 3

2
6 1 2 3 5

* *
˙ ˙ ˙ ,⋅ −



 = − +( ){ + +( ) − +( ) 




(176)

and

 l
S A

l
A A

l
S A

l
A Ai i i i i iH Hω ω6 2⋅ −





= ⋅ −





˙ ˙ .
* *

(177)

16.3  Contributions Due to the Flotor

The contribution l r
F

Q*( )  to the generalized inertia forces for the rth generalized speed is

l r
F

l
S

r
F

F l
S F

l
S

r
F

l
F F

Q v m a Hi* * * *
˙( ) = ⋅ −



 + ⋅ −





1 1ω   . (178)
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Then the individual terms of the l r
F

Q*( ) ’s are as follows:

l
S F

F l
S F

Fv m a m f f u f u

f f u f l f u f

i1
1 2

1 2
1
1 2

1
1

1
1

3
1

2
1

1
1

1
1

2
1

2
1

3
1

2
1

2
1

3
1

1
1

1
1

4
1

2
1

3
1

* *
˙ ˙

˙ ˙ ˙

⋅ −



 = − ( ) + ( )









+

+ − −[ ] − +( ) +[ ] +

ν

ν ν ν ν ν uu f u5
1

1
1

3
1

6
1+ }ν ˙ , (179)

l
S F

l
F F F F i i F F i F F i i iH I u u I u I u u uω 1 31 2 6 32 5 33 3 4 1⋅ −





= +( ) + + + −( )˙ ˙ ˙ ˙ ˙ ˙ ˙ ,
* * * */ / /

(180)

l
S F

F l
S F

Fv m a m f u u u u

u l

i1
2 3

1
1
1

1
1

2
1 2

3
1 2

2
1

1
1

3
1

3
1

1
1

3
1

4
1

1
1

2
1

5
1

3
1 2

2
1

2
1

3
1

* *
˙ ˙ ˙ ˙

˙

⋅ −



 = − +{ ( ) + ( )





− −

− + ( ) + +( )




ν ν ν ν ν ν ν

ν ν ν ν ν






˙ ,u6
1 (181)

l
S F

l
F F F F i i F F i F F i i iH I u u I u I u u uω 2 11 2 6 12 5 13 3 4 1⋅ −( ) = − +( )− − + −( )˙ ˙ ˙ ˙ ˙ ˙ ˙ ,

* / * / * / * (182)

l
S F

F l
S F

Fv m a m f f u u u

l u

i1
3 2

1
2
1

1
1

1
1

1
1

1
1

3
1

2
1

1
1 2

2
1 2

3
1

1
1 2

2
1

2
1

3
1

4
1

2
1

3

* *
˙ ˙ ˙

˙

⋅ −



 = − − −[ ]{ − + ( ) + ( )





+ ( ) + +( )





−

ν ν ν ν ν ν

ν ν ν ν ν11
5
1

1
1

3
1

6
1˙ ˙ ,u u− 




ν ν (183)

l
S F

l
F F F F i i F F i F F i i iH I u u I u I u u uω3 31 2 6 32 5 33 3 4 1⋅ −( ) = − +( )− − + −( )˙ ˙ ˙ ˙ ˙ ˙ ˙ ,

* / * / * / * (184)

l
S F

F l
S F

Fv m a m f l ui1
4 2

1
3
1

2
1

1
1* *

˙⋅ −



 = − +( )




ν

− − + ( ) + +( )





f u u l u1
1

1
1

1
1

1
1

3
1

2
1

1
1 2

2
1

2
1

3
1

3
1ν ν ν ν ν ν˙ ˙ ˙

+ ( ) + +( )





− +( ) − 



ν ν ν ν ν ν1
1 2

2
1

3
1 2

4
1

3
1

2
1

3
1

5
1

1
1

3
1

6
1l u l u u˙ ˙ ˙ , (185)
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 l
S F

l
F F

l
S F

l
F F

H Hω ω4 3⋅ −( ) = ⋅ −( )˙ ˙ ,
* *

(186)

  

l
S F

F l
S F

Fv m a m f u u

u l u u l u

i1
5 2

1
3
1

1
1

1
1

2
1

2
1

2
1

3
1

3
1

3
1

2
1

3
1

4
1

1
1 2

3
1 2

5
1

1
1

2
1

3
1

6
1

* *
˙ ˙

˙ ˙ ˙ ˙ ,

⋅ −



 = − −{

− − +( ) + ( ) + ( )[ ] − +( ) }
ν ν ν

ν ν ν ν ν ν ν ν (187)

l
S F

l
F F F F i i F F i F F i i iH I u u I u I u u uω 5 21 2 6 22 5 23 3 4 1⋅ −( ) = − +( ) − − + −( )˙ ˙ ˙ ˙ ˙ ˙ ˙ ,

* / * / * / * (188)

l
S F

F l
S F

Fv m a m f u u

l u u u

l u l

i1
6 1

1
3
1

1
1

3
1 2

2
1

2
1

2
1

3
1

2
1

1
1

3
1

3
1

1
1

3
1

4
1

1
1

2
1

3
1

5
1

2
1

3
1 2

* *
˙ ˙

˙ ˙ ˙

˙

⋅ −



 = − + ( )




+ +( ) − −

− +( ) + +( ) +

ν ν

ν ν ν ν ν ν

ν ν ν νν3
1 2

6
1( )









˙ ,u (189)

and

l
S F

l
F F F F i i F F i F F i i iH I u u I u I u u uω6 11 2 6 12 5 13 3 4 1⋅ −( ) = − +( )− − + −( )˙ ˙ ˙ ˙ ˙ ˙ ˙ .

* / * / * / * (190)

17.  EQUATIONS OF MOTION FOR THE SYSTEM

17.1  Kinematical Equations

There are 48 kinematical equations for the system, one for each generalized speed:

 u q j ij
i

j
i= = =˙ , ( , ..., ; , ..., ) .1 6 1 8 (191)

17.2  Dynamical Equations

Six dynamical equations are obtained using the following process. First, add the respective

contributions of the 17 rigid bodies to the set of holonomic generalized active and holonomic general-

ized inertia forces, for each generalized speed (i.e., r = 1, …, 48). The holonomic generalized active

force for the rth generalized speed is
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F Fr r
j

j
= ( )∑

=1

17
, (192)

where Fr
j( ) is the contribution to the set of holonomic generalized active forces due to the jth rigid

body. That is,

F Q Q Qr l r
F

l r
A

i
l r

P

i

i i= + ∑ + ∑
= =1

8

1

8
. (193)

Likewise, the contribution to the set of holonomic generalized inertia forces is

F F Q Q Qr r
j

j
l r

F
l r

A

i
l r

P

i

i i* * * * * .= ( ) =∑ ( ) + ( )∑ + ( )∑
= = =1

17

1

8

1

8
(194)

Second, develop the relationship between the dependent and the independent generalized speeds in the

form

u A u B i j rj
i

rs s r
s

= + = = =∑
=

1

1

6
2 8 1 6 7 48( , ..., ; , ..., ; , ..., ) , (195)

where the factors us
1 are the six independent generalized speeds, and the terms uj

i  are the 42 dependent

generalized speeds. Ars  and Br are scalars, derived from the nonholonomic constraint equations (see

sec. 17.3). The nonholonomic and holonomic generalized active forces are related to each other as

follows:

  

˜ ( , , ) .F F F A rr r s sr
s

= + =∑
=

1 6
7

48
K (196)

Similarly, the nonholonomic and holonomic generalized inertial forces are related to each other as follows:

  

˜ ( , , ) .* * *F F F A rr r s sr
s

= + =∑
=

1 6
7

48
K (197)

Kane’s dynamical equations,* then, are

  
˜ ˜ ( , , ) .*F F rr r+ = =0 1 6K (198)

* This step was erroneously omitted in references 10 and 11, resulting in incorrect incorporation of system constraints. The authors
discovered and corrected the error during the course of model verification.
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17.3  Constraint Equations

The kinematical and dynamical equations together are 54 in number: 48 kinematical and 6

dynamical. Since the complete set of equations for an n-degree-of-freedom system numbers 2n, and

since the system S̃ has 48 degrees of freedom, 42 more equations are needed to describe completely the

motion of the system. These missing equations are the holonomic constraint equations (in nonholonomic

form) for the dependent generalized speeds uj
i  (i = 2, …, 8;  j = 1, …6).

Since the velocity and angular velocity of the flotor center of mass F* is the same irrespective of

the actuator path chosen for describing its position, a set of constraint equations can be written in vector

form using the following:

  

l
S F

l

S S F

l
S Fi

i i jv
dr

dt
v i j

*
*

*
( , , , ) ,=









 = = =1 2 8K (199)

and

  l
S F

l
S Fi j i jω ω

* *
( , , , ) .= = =1 2 8K (200)

If one expands equation (199) and resolves them into a common coordinate system (here, the f̂
i
 coordi-

nate system), one obtains the following 21 (motion) constraint equations:
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 (i = 2, …, 8; j = 1, 2, 3)  , (201)

Similarly, if one expands equation (200) and resolves them into a common coordinate system (here again,

the f̂
i
 coordinate system), one obtains the remaining 21 (motion) constraint equations:
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(It should be noted here that, although equations (201) and (202) are in nonholonomic form, the constraints

they represent are actually geometric.)

18.  STATE-SPACE FORM OF THE EQUATIONS OF MOTION

The time derivatives of the constraint equations can be used with the constraint equations them-

selves, to write the kinematical and dynamical equations (eqs. (191) and (198), respectively) in the

following descriptor form:

I O

O M

q

u

O N
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˙
. (203)

The state vector consists of the 48 coordinates q  and the six independent generalized speeds uI , where

u u u u u u uI
T

= [ ]1
1

2
1

3
1

4
1

5
1

6
1 . (204)

The constant matrices M, K, and C are system mass, stiffness, and damping matrices, respectively. The

symbols I and O represent, respectively, an identity matrix and a zero matrix of appropriate dimensions;

vector i  contains the eight control currents to the Lorentz coils; and vector d  is the disturbance vector.

The input matrices B and E are time-varying matrix functions of the coordinates. N is a constant matrix

that incorporates the kinematical equations; N and C together incorporate the holonomic constraints.

The disturbance term E d[ ] { } accounts for the umbilical bias force Fb and moment Mb, and the

unknown direct disturbance force FD  and moment M D . Recall that in the development of the foregoing

equations the angular acceleration of the stator was assumed to be negligible. However, the translational

acceleration of the stator, although presumably unknown, cannot be neglected. In fact, that acceleration
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is the source of the umbilical contribution to flotor g-jitter. To include this indirect disturbance

contribution, one must add an (unknown) indirect acceleration disturbance term aI to each of

equations (26)–(28). Along with the other disturbances, this indirect disturbance will appear in the final

term of  equation (203).

19.  MODEL VERIFICATION

AUTOLEV™ software, marketed by Online Dynamics, Inc., was used to create a full nonlinear
model of ARIS including the actuator (rigid-body) dynamics.14 AUTOLEV was then used to develop
and verify the linearized equations presented in this paper.

An independent model was developed using the DENEB Envision software, with current CAD
models of an ARIS-outfitted ISPR.14 This model was used as an independent (static) check of the
actuator kinematics.

For dynamic validation, various loads were applied to the flotor, and the nonlinear AUTOLEV
model was allowed to move in simulated response. Motions were permitted which greatly exceeded the
rattle space constraints (with angles permitted up to ≈90°), to test thoroughly the nonlinear model. The
six angles for a single actuator (AUTOLEV model) were inserted into the Envision model, and the
remaining 42 actuator angles were compared between the two nonlinear models. The respective angles
were in consistent agreement, even with these large motions, to within less than half a degree.

20.  FUTURE WORK

The next tasks will be the addition of umbilical forces to the AUTOLEV equations, the imple-
mentation of a linearized model in MATLAB®, and MATLAB model verification. The verification
procedure will first entail comparing the eight position vectors from a common point on the stator to the
flotor center of mass, as traced through the eight actuators, with the flotor centered in its home position.
Then the procedure will be repeated with the flotor moved statically from its home position, in six
degrees of freedom.

For dynamic verification, various loads will be applied to the flotor to verify that the eight
position vectors track for motion inside the rattlespace (i.e., small angles). Simulations of the nonlinear
AUTOLEV model will be compared with simulations of linearized system models (one with and one
without actuator dynamics) to determine the simplest model suitable for controller design.

System dynamics will be incorporated into the Envision model, along with the capability of
state-space, discrete time control. The MATLAB and Envision models will then be available, respectively,
for centralized, state-space/optimal controller design and for closed-loop system simulation.
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